科学研究
  •  科研活动 
     科研平台 
     科研团队 
     根植地方 
  •  
    量子光学与量子信息研究所

    一、量子所简介

    商洛学院量子光学与量子信息研究20003月正式成立,致力于前沿的量子科学研究,特别是在量子光学、量子计算、量子通信、量子精密测量及量子传感等领域开展基础性研究工作,推动量子技术的发展。先后邀请了候洵院士,西北大学张岳教授、岳瑞宏教授、杨志勇教授等专家学者来校讲座。20237月研究所经历了大力整顿和人员调整,重新凝练了三个研究方向:(一)量子关联与量子调控;(二)太赫兹量子光电物理;(三)量子材料结构设计与物态调控。现有专职研究人员7人,其中博士4人,硕士3人。目前研究成员主持陕西省教育厅项目2项,主持商洛市科技局项目1项,主持完成国家自然科学基金项目1项,完成陕西省科技厅项目2项、参与完成国家自然科学基金项目5项,申请发明专利1件、软件著作1部,在国内外学术期刊上发表SCI表论文40余篇。

    二、研究所成员

    研究方向

    姓名

    出生年月

    学位/职称

    角色

    方向一

    谭小东

    1985.10

    博士/副教授

    研究所负责人

    江维

    1991.02

    博士/讲师

    骨干成员

    方向二

    宋亚峰

    1984.10

    博士/副教授

    骨干成员

    雷健

    1990.05

    硕士/讲师

    骨干成员

    李丽君

    1991.03

    硕士/讲师

    一般成员

    方向三

    侯茹

    1970.05

    硕士/副教授

    骨干成员

    石玉

    1981.09

    博士/讲师

    一般成员

    三、研究方向

    方向一:量子关联与量子调控方向。主要研究度量量子关联的新方法,在强关联电子体系中深入探索量子关联的基本性质,包括量子关联在马尔科夫和非马尔科夫环境下的一般演化规律,非纠缠量子关联与量子纠缠及总量子关联的关系等,深化对基础物理问题的理解,为设计出更好的量子信息处理方案提供理论支撑。

    方向二:太赫兹量子光电物理方向。围绕近年来兴起的太赫兹量子光电科学与技术,研究基于量子限制效应和量子隧穿效应的太赫兹及红外量子级联激光器、光泵浦激光器、高功率多波长固体激光器、光纤传感器、量子级联探测器等新型半导体量子光电器件中的子带间跃迁及量子输运物理、谐振腔设计、以及相关新型结构光电器件中的光电特性,为助力太赫兹科学与技术真正走向室温化应用的新的技术路线提供理论支撑和技术探索。

    方向量子材料结构设计与物态调控方向。通过开发新材料、构筑新结构、发现新物态以及施加外场等手段对量子过程进行调控。计划在固态量子系统、光与原子相互作用系统等体系开展深入探索,构建和发展新型信息、通讯和探测技术与方法,为量子计算、量子信息提供新原理和新技术,并对光电器件制造、精密加工、新材料产业等领域的发展起到重要引领作用。

    四、研究成果

    [1] Xiao-Dong Tan, et al. Quantum discord in zigzag graphene nanoribbons, Physica E, 2025, 165: 116075 (SCI)  https://doi.org/10.1016/j.physe.2024.116075

    [2] Xiao-Dong Tan, et al. Edge magnetism in zigzag graphene nanoribbons with Rashba spin-orbit coupling. Journal of Magnetism and Magnetic Materials, 2024, 600: 172118  (SCI) https://doi.org/10.1016/j.jmmm.2024.172118

    [3] Jian Lei, et al. High-power CW 1048 nm Yb: YAG Dual-Ended Diode-pumped zigzag slab Laser. Optics & Laser Technology, 2023, 158: 108843 (SCI) https://doi.org/10.1016/j.optlastec.2022.108843

    [4] Jian Lei, et al. Experimental and Theoretical Study of Dual-Wavelength Continuous-wave Laser in Yb: YAG at 1030 and 1048 nm. Optics & Laser Technology, 2023, 164: 109522  (SCI) https://doi.org/10.1016/j.optlastec.2023.109522

    [5] Xiao-Dong Tan, et al. Pauli susceptibility of zigzag graphene nanoribbons. Micro and Nanostructures, 2023, 184: 207687 (SCI)https://doi.org/10.1016/j.micrna.2023.207687

    [6] Jichen Xu, Wei Jiang, et al. Hepatic and portal vein segmentation with dual-stream deep neural network. Medical Physics, 2023, 51: 5441-5456  (SCI)https://doi.org/10.1002/mp.17090

    [7] Xiao-Dong Tan, et al. Teleportation of the werner state via graphene-nanoribbon- based quantum channels under the amplitude-damping environment. Physica E, 2023, 147: 115565 (SCI) https://doi.org/10.1016/j.physe.2022.115565

    [8] Xiao-Dong Tan, et al. Dynamics of classical and quantum correlations in a zigzag graphene nanoribbon under noisy environments. Quantum Information Processing, 2022, 21: 103 (SCI) https://doi.org/10.1007/s11128-022-03439-3

    [9] Xiao-Dong Tan, et al. Quantum teleportation between the narrow armchair graphene nanoribbons with zigzag ends. Journal of Physics: Condensed Matter, 2022, 34: 335604 (SCI) https://doi.org/10.1088/1361-648x/ac7766

    [10] Le Zhang, Xunfeng Yuan, Xiao-Dong Tan (corresponding author). Teleportation of Werner state via graphene-based quantum channels under dephasing environment. Acta Physica Sinica, 2022, 71: 070304 (SCI)https://doi.org/10.7498/aps.71.20211881

    [11] 侯茹, 郭平, 赵润宁, 韩聚广. RuSin±(n =16)团簇的几何结构、电子性质与磁性的理论研究. 原子与分子物理学报. 2022, 39 (06): 91-99(北大核心)

    [12] Yu Shi, et al. Lamella Multiple Grained Structure Making 2205 Duplex Stainless Steel with Superior Strength and Ductility. J. Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(5): 754-760  (SCI)https://doi.org/10.1007/s11595-021-2468-9

    [13]石玉, 李正宁, 盛捷等. 纳米高强钢铁材料增塑研究进展. 材料导报, 2021, 35(7): 155-161 (EI)

    [14] Xiao-Dong Tan, et al. Dynamics of quantum entanglement in a zigzag graphene nanoribbon. Journal of Physics: Condensed Matter, 2021, 33: 345404 (SCI) https://doi.org/10.1088/1361-648x/ac0bea

    [15]李丽君, . 光子晶体少模光纤中受激布里渊散射的慢光研究. 光通信技术, 2021, 45(9): 49-53

    [16] Xiao-Dong Tan, et al. Short-Distance Teleportation of an Arbitrary Two-Qubit State Via a Bell State. International Journal of Theoretical Physics, 2021, 60: 127 (SCI) https://doi.org/10.1007/s10773-021-04753-9

    [17] Wei Jiang, et al. Probe response of a cavity-optomechanical system coupling to a frequency-dependent bath, Physical Review A, 2020, 101: 033804 (SCI) https://doi.org/10.1103/PhysRevA.101.033804

    [18] W.W. Xia, J. Mao, F. Xu, M.X. Gong, Xiao-Dong Tan, et al. Atomic Modulation Engineering of Hexagon-Shaped CeO2 Nanocrystals by In Situ Sculpturing of an Electron Beam. Journal of Physical Chemistry C, 2020, 124: 17006 (SCI)

    https://doi.org/10.1021/acs.jpcc.0c04106

    [19] 喇培清, 石玉, 汪科良等. 热轧变形量对铝热法制备的2507双相不锈组织和力学性能的影. 兰州理工大学学报, 2020, 46(4): 1-5

    [20] Xiao-Dong Tan, et al. Thermal quantum correlations in zigzag graphene nanoribbons. Journal of Physics: Condensed Matter, 2020, 32: 185601 (SCI)  https://doi.org/10.1088/1361-648x/ab6be8

    [21] Li-Jun Li, et al. Influence of doping on stimulated Brillouin scattering slow light in few mode fibers. Optical Fiber Technology, 2020, 58: 102308 (SCI)

    https://doi.org/10.1016/j.yofte.2020.102308  

    [22] Ya-Feng Song*#, et al. Intersubband Transitions in Nonpolar GaN-based Resonant Phonon Depopulation Multiple-Quantum Wells for Terahertz Emissions, Journal of the Korean Physical Society, 2019, 74: 1039–1045SCIhttps://link.springer.com/article/10.3938/jkps.74.1039

    [23] Xiao-Dong Tan, et al. Quantum dissonance in chiral graphene nanoribbons. Journal of Physics: Condensed Matter, 2019, 31: 205602 (SCI)https://doi.org/10.1088/1361-648x/ab071c

    [24] Yu Shi, Yuan M , Li Z , et al. Two-step rolling and annealing makes nanoscale 316L austenite stainless steel with high ductility. Materials Science and Engineering A, 2019, 759: 391-395 (SCI)https://doi.org/10.1016/j.msea.2019.05.054

    [25] Yu Shi, La P, Han Y, et al. Rolling tuning microstructure and tensile properties of nano/microcrystalline 304 stainless steel[J]. Modern Physics Letters B, 2019, 33(28): 1950344  (SCI) https://doi.org/10.1142/S0217984919503445

    [26] H. Dong, F. Xu, Z.Q. Sun, X. Wu, Q.B. Zhang, Y.S. Zhai, Xiao-Dong Tan, et al. In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nature Nanotechnology, 2019, 14: 950 (SCI)https://doi.org/10.1038/s41565-019-0526-7

    [27] W. Jiang, et al. Non-Markovian entanglement dynamics of open quantum systems with continuous measurement feedback, Physical Review A, 2018, 98, 052134  (SCI) https://doi.org/10.1103/PhysRevA.98.052134

    [28] 侯茹, 郭平, 赵润宁, 韩聚广. 密度泛函理论研究Nb2Gen(n =14)团簇. 原子与分子物理学报. 2018, 35 (02): 239-245 (北大核心)

    [29] Yang Liu, Jian Lei (Corresponding author), et al. 4.55 kW LD end-pumped Nd: YAG surface gain slab lase. Laser Physics, 2018, 29(1): 016101 (SCI) https://doi.org/10.1088/1555-6611/aaed34

    [30] Li-jun Li, et al. Slow light via stimulated Brillouin scattering in few-mode fibers. Proceedings of SPIEThe International Society for Optical Engineering, 2018, 1096412 (EI) https://doi.org/10.1117/12.2504874

    [31] Y.T Shen, T. Xu, Xiao-Dong Tan, et al. In Situ Repair of 2D Chalcogenides under Electron Beam Irradiation. Advanced Materials, 2018, 1705954 (SCI)

    https://doi.org/10.1002/adma.201705954

    [32] L.B. He, L. Zhang, Xiao-Dong Tan, et al. Surface energy and surface stability of Ag nanocrystals at elevated temperatures and their dominance in sublimation-induced shape evolution. Small, 2017, 13: 1700743 (SCI)

    https://doi.org/10.1002/smll.201700743

    [33] T. Xu, Y.L. Zhou, Xiao-Dong Tan, et al. Creating the Smallest BN Nanotube from Bilayer h-BN. Advanced Functional Materials, 2017, 27: 1603897 (SCI)

    https://doi.org/10.1002/adfm.201603897

    [34] Y.T. Shen, T. Xu, Xiao-Dong Tan, et al. Electron Beam Etching of CaO Crystals Observed Atom by Atom. Nano Letters, 2017, 17: 5119 (SCI)

    https://doi.org/10.1021/acs.nanolett.7b02498

    [35] Q.B Zhang, K.B Yin, H. Dong, Y.L Zhou, Xiao-Dong Tan, et al. Electrically Driven Cation Exchange for In situ Fabrication of Individual Nanostructures. Nature Communications, 2017, 8: 14889 (SCI)

    https://doi.org/10.1038/ncomms14889

    [36] Xiao-Dong Tan, et al. The electronic and magnetic properties of corrugated zigzag graphene nanoribbons with divacancy defects. Physica E, 2017, 85: 302 (SCI) https://doi.org/10.1016/j.physe.2016.09.009

    [37] Xiao-Dong Tan, et al. Entanglement teleportation via thermal Wannier edge states in a chiral graphene nanoribbon. Quantum Information Processing, 2017, 16: 114   (SCI)  https://doi.org/10.1007/s11128-017-1563-5

    [38] Xiao-Dong Tan, et al. Spin susceptibilities in armchair graphene nanoribbons with Rashba spin-orbit coupling. Journal of Physics: Condensed Matter, 2016, 28: 325301 (SCI) https://doi.org/10.1088/0953-8984/28/32/325301

    [39] 侯茹, 李书婷, 牛峰, 屈小惠, 谢楠. RuSin(n =16)团簇的结构、稳定性和电子性质的密度泛函研究. 原子与分子物理学报. 2016, 33(2): 252-258  (CSCD)

    [40] Xiao-Dong Tan, et al. Quantum correlations in chiral graphene nanoribbons. Journal of Physics: Condensed Matter, 2016, 28: 435601   (SCI)https://doi.org/10.1088/0953-8984/28/43/435601

    [41] Xiao-Dong Tan, et al. Gate tunable spin transport in graphene with Rashba spin-orbit coupling. Superlattices Microstructures, 2016, 98: 473  (SCI)  https://doi.org/10.1016/j.spmi.2016.09.007

    [42] Ya-Feng Song*#, et al. Plasmon mode coupling and depolarization shifts in AlGaAs/GaAs asymmetric step quantum wells with and without electric field, International Journal of Modern Physics B, 2015, 29(29): 1550212SCIhttps://www.worldscientific.com/doi/abs/10.1142/S0217979215502124

    [43] Xiao-Dong Tan, et al. Quantum and classical thermal correlations in the XXZ spin chain. International Journal of Theoretical Physics, 2014, 53: 91 (SCI) https://doi.org/10.1007/s10773-013-1786-x

    [44] 侯茹, 郭平, 陈永庄, 张继良, 李书婷. Nb2Sin-(n=16)团簇的几何构型、电子性质和磁性的理论研究. 原子与分子物理学报. 2014, 31(3): 385-392 (CSCD)

    [45] Xiao-Dong Tan, et al. Entanglement and quantum phase transition in the Heisenberg-Ising model. Chinese Physics B, 2013, 22: 020308   (SCI)

    https://doi.org/10.1088/1674-1056/22/2/020308

    [46] Wei Gao, Xiao-Dong Tan, et al. Quantum Memory with Natural Inhomogeneous Broadening in an Optical Cavity. International Journal of Theoretical Physics, 2013, 52: 2092 (SCI)  https://doi.org/10.1007/s10773-013-1503-9  

    [47] Xiao-Dong Tan, et al. Quantum correlations in the infinite XY spin-1/2 chains and quantum phase transition. Communications in Theoretical Physics, 2013, 59: 146  (SCI) https://doi.org/10.1088/0253-6102/59/2/04

    [48] Ya-Feng Song#*, et al. Plasmons in free-standing nanorod with two-dimensional parabolic quantum well caused by surface states, Chinese Physics B, 2012, 21(5): 05730SCI https://doi.org/10.1088/1674-1056/21/5/057302

    [49] Xiao-Dong Tan, et al. New insights into quantum and classical correlations in XY spin models. European Physical Journal B, 2012, 85: 411 (SCI)

    https://doi.org/10.1140/epjb/e2012-30641-9

    [50] 侯茹, 郭平, 陈永庄, 张继良, 任兆玉. 无限长封装过渡金属Cd的棱柱型硅纳米管的理论研究. 原子与分子物理学报. 2012, 29(6): 977-982 (CSCD)

    [51] Ya-Feng Song#*, et al. Intersubband absorption energy shifts in 3-level system for asymmetric quantum well terahertz emitters, Journal of Applied Physics, 2010, 108(8): 083112SCI https://doi.org/10.1063/1.3487953

     

     

商洛学院电子信息与电气工程学院@版权所有    地址: 商洛市北新街东段10号

电话:0914-****    邮箱:****@163.com   技术:他山之石